
It is now widely recognized that the human body is 
colonized by many species of microorganisms that 
can influence a range of metabolic, developmental and 
physio logical processes affecting host health. These 
microorganisms, especially those of the gut, help liberate 
and make available to their host otherwise  inaccessible 
components of the diet1, stimulate development of 
the host immune system2 and protect against patho
gen  invasion3, among other functions beneficial to 
the host. The gut microbiota has also been implicated 
in several chronic gastrointestinal inflammatory dis
orders, including Crohn’s disease4,5, ulcerative colitis6,7, 
primary sclerosing cholangitis8, NAFLD9 and environ
mental enteropathy10,11 as well as other chronic dis
orders such as obesity12–14, chronic periodontitis15,16 and 
 cardiovascular disease17.

Clinical studies correlating specific taxonomic groups 
with disease states have yielded valuable insight but have 
often assumed that host–microorganism interactions 
occur independently of the rest of the microbial com
munity. Under this assumption, multispecies inter actions 
that modulate the effect of specific taxa on health of the 
host would be overlooked. In community ecology, 
the field that focuses on multispecies inter actions18, one 
phenom enon that is receiving increasing interest is prior
ity effects, or the effects that the history of species arrival 
has on how species affect one another in communities19. 
Through this lens, human health can be viewed as the net 
result of dynamic interactions that involve both the host 

and its microbiota20. In this Review, we apply the con
cept of priority effects to the infant gut and explore how 
knowledge of the order and timing of microbial coloniza
tion of the infant gut might help predict the development 
of the earlylife microbiota and guide it towards a healthy 
state. We focus on bacteria because more data are avail
able for them than for other components of the micro
biota, but the same concepts might apply to fungal, viral 
and other microbial components.

Gut microbiota assembly in early life

Community ecologists have proposed different con
cepts over the past century to explain observed patterns 
of species distribution and abundance. Mark Vellend 
synthesized these concepts by categorizing the pro
cesses that affect community assembly into four groups: 
dispersal, selection, drift and diversification21,22 (FIG. 1). 
Taxa are added to local sites through dispersal from the 
regional species pool and through in situ diversification, 
and the relative abundances of taxa are further shaped 
by selection and drift. In this section, we describe each 
process in reference to the infant gut to provide a context 
for discussing priority effects in the next section.

Dispersal. The gastrointestinal tract of a newborn baby 
represents a large suite of physical and metabolic niches 
that microorganisms can colonize via dispersal23,24. 
Stool samples collected within the first 8 days of life 
suggest that initial colonizers largely originate from the 
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Community assembly

The construction and 

maintenance of local 

communities through 

sequential, repeated 

immigration of species from 

a regional species pool.

Regional species pool

The set of species that could 

potentially colonize and 

establish within a community.
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Abstract | Understanding how microbial communities develop is essential for predicting and 

directing their future states. Ecological theory suggests that community development is often 

influenced by priority effects, in which the order and timing of species arrival determine how 

species affect one another. Priority effects can have long-lasting consequences, particularly 

if species arrival history varies during the early stage of community development, but their 
importance to the human gut microbiota and host health remains largely unknown. Here, 

we explore how priority effects might influence microbial communities in the gastrointestinal 
tract during early childhood and how the strength of priority effects can be estimated from the 

composition of the microbial species pool. We also discuss factors that alter microbial 

transmission, such as delivery mode, diet and parenting behaviours such as breastfeeding, which 

can influence the likelihood of priority effects. An improved knowledge of priority effects has the 

potential to inform microorganism-based therapies, such as prebiotics and probiotics, which are 

aimed at guiding the microbiota towards a healthy state.
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maternal microbiota25. For example, the microbiota of 
vaginally delivered infants are dominated by taxa found 
in their mother’s vagina (Lactobacillus spp., Prevotella 
spp., Atopobium spp. or Sneathia spp.), whereas those 
of infants delivered by caesarian section are enriched 
for taxa found on human skin (Staphylococcus spp., 
Corynebacterium spp. and Propionibacterium spp.)25,26. 
The mother’s gut can also be a source of the initial micro
bial inoculum27–30, and the sharing of strains between 
mothers and newborn babies is commonly observed. 
Maternal strains of Helicobacter pylori 31,32, Escherichia 
coli33,34, Bacteroides vulgatus34 and Parabacteroides dista-
sonis34 have been found to colonize the gastro intestinal 
tract of infants, as have Bifidobacterium longum subsp. 
longum and other Bifidobacterium spp.34–36. While 
species level similarities between mothers and their 
children tend to increase over the first several years 
of life, strainlevel sharing decreases over time. For 
example, one study found that 91% of strains were 
shared between the stool of mothers and their new
born babies 4 days after birth, yet that figure dropped 
to 55% 1 year later34. In addition, healthy, fullterm 
infants can be influenced by their mother’s micro biota 
even before the rupture of amniotic membranes37. 
Although the existence of a persistent, metabolically 
active microbial community in the placenta remains 
controversial38,39, microbial DNA has been reported in 
the placenta40,41, amniotic fluid41,42 and meconium43–45. 
Microorganisms or microbial components can arrive 
in the pre natal intrauterine environment by ascend
ing from the vagina46 or by spreading haematogenously 
from the oral cavity or gut47. It has also been postulated 
that dendritic cells or lymphoid tissues can translocate 
bacteria or bacterial DNA to the placenta48. However, 
we do not yet have enough information about the poten
tial role of these events in healthy human pregnancies 
to assess how they might influence priority effects. Even 
if there were a microbial community in the placenta or 
amniotic sac, its contributions to the membership of 
the postnatal infant microbiota are likely overwhelmed 
by the vast numbers of microorganisms to which the 
infant is exposed at birth. Overall, specific taxa from 

the mother’s microbiota are commonly transmitted 
to the infant’s gut in early life. Variation in microbiota 
among mothers should therefore result in variation in 
dispersal among their infants. In addition to the mother, 
there are many other origins of microbial dispersal to 
the infant, which we will discuss later.

Selection. Selection occurs when fitness and niche dif
ferences among taxa cause them to reproduce or die at 
different rates. In the infant gut, two primary sources 
of selection are the immune system and the diet. For 
instance, commensal E. coli strains colonizing the gastro
intestinal tract of Rag2–/– mice, which lack B cells and 
T cells, adapted more slowly than strains colonizing mice 
with an intact adaptive immune system49. In gnotobiotic 
zebrafish, a statistical model that assumed that species 
are identical to one another in their birth and death 
rates predicted microbiota composition well in early 
life, but selection became more important as the adaptive 
immune system of the fish became active50. Similarly, 
as an infant’s immune system matures, it might exert 
increasing selection on the microbiota, causing largely 
homogeneous communities to become increasingly 
bodysitespecific23,51.

Drift. After a microorganism colonizes the infant gut, 
its growth rate and abundance can be shaped not just 
through deterministic forces such as selection but also 
via stochastic processes such as ecological drift. Drift 
is the random changes in population size that occur 
regardless of species identity52. The effect of drift is 
stronger on lowabundance species because they are 
more likely to be stochastically pushed to local extinc
tion. Some species are at low abundance in the gut 
because they arrive infrequently as a small population 
or because they experience large reductions in number 
by a major perturbation such as diarrhoea53 or antibiotic 
treatment54. These species can be affected by drift more 
strongly than by selection. However, the effect of drift 
on gut microbiota assembly has not been well character
ized, in part because factors that cause drift often alter 
selection as well, making it difficult to tease apart the 
two processes.

Diversification. Microorganisms, with their large popu
lation sizes, high growth rates and high mutation and 
recombination rates, are able to rapidly diversify 
and adapt when faced with the strong selective regimes 
found in the human body. One example is the diversifi
cation of Pseudomonas aeruginosa in the airways of 
patients with cystic fibrosis. Several adaptations were 
observed over a decade of mostly constant selective pres
sures inside the cystic fibrosis lung55,56. By comparison, 
communities that assemble in the infant gut experience 
frequently shifting selective regimes related to immune 
system development, the addition of complementary 
foods, the cessation of breastfeeding and increasing 
competition resulting from increased taxonomic diver
sity. Because diversification often requires persistent 
selective pressure, the extent of diversification in the 
infant gut during assembly remains uncertain.

Key points

• Infant gut microbiota assembly is driven by four ecological processes — dispersal, 

diversification, drift and selection — and can be understood by resolving their relative 

contributions, mechanisms and interactive effects

• Priority effects, whereby the order and timing of dispersal alters how diversification, 

drift and selection affect infant gut microbiota assembly, could have long-lasting 

consequences for host health

• Priority effects in the infant gut are influenced by the regional species pool, which is 

made up of numerous local communities, some of which are host-associated, while 

others are not

• To understand the role of priority effects in the infant gut, future studies in model 

systems should intentionally vary dispersal order and timing

• In future studies, when intentional variation in dispersal order is not feasible, dispersal 

order should be carefully recorded along with relevant environmental variables

• An understanding of the processes that govern priority effects can be used to inform 

microorganism-based therapies and manage strategies aimed at guiding the 

microbiota towards a healthy state
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Community state types

(CSTs). Categories of 

stereotypical microbial 

communities that are typically 

defined by their dominant taxa 

and found at a given body site.

Strong priority effects can occur when earlyarriving 
species have a large effect on the local environment or 
when latearriving species have high environmental  
requirements19 (FIG. 3a,b). Furthermore, for an early 
arriving species to preempt a niche from a late arriving 
species, the two must have a high degree of niche over
lap19,74 (FIG. 3c). This condition has been demonstrated 
in mouse colonization models in which isogenic strains 
with complete niche overlap exhibit strong prior
ity effects over one another75,76. Although the mech
anisms of priority effects are  usually unknown, Lee et al.  

identified a bacterial genetic locus, commensal colo
niz ation factor (ccf), that mediates priority effects in 
hostassociated Bacteroides spp.77. Consistent with 
the niche overlap expectation (FIG. 3c), gnoto biotic 
mice that are colonized with a single Bacteroides sp. 
are resistant to colonization by the same, but not dif
ferent, species77. The ccf locus enables Bacteroides 
spp. to associate with colonic crypts, thereby exclud
ing later immigrants77. In fact, nontoxinproducing 
Bacteroides fragilis can limit the colonization of entero
toxigenic B. fragilis in specific pathogenfree (SPF) 
mice, demonstrating that priority effects through niche 
preemption could be a powerful tool in the design of  
probioticbased prophylaxis78.

Microorganisms can also modify niches found in the 
human body through interactions with the host immune 
system. For example, Bacteroides spp. coloniza tion can 
affect innate immune signalling79, endotoxin tolerance79 
and T helper 1 (TH1) cell immune responses27, and 
Bifidobacterium spp. can modulate vaccine response80 
and increase cytokine production in vitro81. These 
immunemediated effects can occur even as the result of 
prenatal microbial exposure. Colonization of pregnant 
mice with the HA107 strain of E. coli, which was genet
ically engineered to be unable to persist in the intestine, 
demonstrated that microbial metabolites, independent 

of the microorganisms themselves, can increase both 
intestinal group 3 innate lymphoid cells and F4/80+ 

CD11c+ mononuclear cells in neonate pups while also 
decreasing bacterial translocation to the mesenteric 
lymph nodes82. The transient gestational colonization 
affecting both immune development and microbiota 
structure in offspring suggests that priority effects can 
occur before microorganisms even have the opportunity 
to colonize82.

Species pools in early life

The role that priority effects play during community 
assembly is determined by the characteristics of the 
microbial taxa contained in the pool of potential coloniz
ers19. For example, a species pool that is taxonomically 
and functionally more diverse might be more likely to 
contain taxa that yield priority effects19. Therefore, 
to understand whether priority effects influence com
munity assembly, it is helpful to characterize the set 
of microorganisms that have the potential to colonize 
the infant gut in early life, including those origin ating 
from hostassociated, environmental and yet unknown 
sources (FIG. 4). However, defining a  species pool is often 
challenging, and few investigations of earlylife colo
niza tion have attempted to characterize all sources of 
 microorganisms that are capable of  colonizing an infant.

The microbiota of family members, medical per
sonnel, birth attendants and other caretakers can all 
contribute to the species pool of an infant’s gut (FIG. 4). 
The first site with which many infants come into con
tact is the maternal birth canal. Vaginal communities 
have been classified into five distinct community state 

types (CSTs), with four of the five exhibiting somewhat 
low diversity and domination by a distinct Lactobacillus 
spp.83. If delivered via caesarian section, infants can 
instead first come into contact with the mother’s 
skin26, which harbours more diverse communities than 
the vagina and therefore might contain more species 
 capable of causing priority effects. Although delivery 
mode is correlated with differences in early postnatal 
microbiota structure, mothers who deliver via caes
arian section (both planned and emergency) are com
monly prescribed antibiotics84 and are often not able 
to breastfeed as early as those who deliver vaginally85, 
confounding the effect of delivery mode on micro biome 
assembly. Nonetheless, some mothers intentionally 
wipe their caesarian delivered infants with their vag
inal secretions in an attempt to simulate the priority 
effects that occur following vaginal delivery, although 
the health benefits remain unproven86.

The skin microbiota has ample opportunity to dis
perse while the infant is in contact with their mother 
during sleep or feeding23,87,88. Kangaroo mother care, 
or  immediate and continual skintoskin contact 
between mothers and newborn babies immediately 
following birth, is commonly recommended for pre
term infants because it decreases the risk of sepsis and 
increases breastfeeding rates89, effects that could be 
partially mediated by increased transmission of com
mensal bacteria90. As discussed earlier, breast milk 
contains bacteria, although its composition varies 

Figure 2 | Contrasting hypothetical patterns of community assembly in the infant gut. 

An illustration of how infant microbial communities assemble with deterministic host 

selection (top) or priority effects (bottom). The shapes represent different taxa, while 
the colours represent the community state. Under deterministic host selection, the state 
of the assembling community is determined by host features that select for the blue 

microorganisms regardless of colonization order. With priority effects, colonization order 

can matter more than species identity.
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Future research needs

Perhaps the greatest challenge for investigating factors 
that influence gut microbiota assembly is the limited 
set of opportunities for experiments with humans. 
Experimental manipulation of bacterial colonization 
history, which is necessary to rigorously evaluate prior
ity effects, might pose health risks to the developing 
infant and therefore should not be implemented with
out careful review. Nevertheless, some clinical situations 
might be amenable to interventional studies in which 
bacterial exposure is intentionally altered through 
the use of antibiotics, probiotics or techniques such 
as  vaginal microbiota transfer86. For example, when 
popu lations of comparable infants vary in the timing 
of probiotic supplementation relative to anti biotic use, 
this variation could be used to test for priority effects 
and clinical consequences for the host. In fact, the 
results of probiotic interventions might depend on 
the specific organism and the timing and dosage of its 
administration, which might be in part caused by pri
ority effects in the microbiota. One study found that 
Bifidobacterium breve BBG001 administered within 
the first 48 hours of life had no effect on necrotizing 
enterocolitis or lateonset sepsis121, while another found 
that use of Lactobacillus plantarum ATCC202195 in 
conjunction with a prebiotic fructo oligosaccharide 
in the first week of life reduced neonatal sepsis by 
40%122. Broad conclusions, such as the suggestion in a 
2014 Cochrane review that probiotics can help prevent 
necrotizing enterocolitis in preterm infants123, seem pre
mature at this stage. This metaanalysis pooled results 
from 24 randomized  trials using a range of organisms, 
including Saccharomyces boulardii, Lactobacillus spp., 
Bifidobacterium spp. or a mixture of several bac teria 
and/or fungal taxa, administered at different time 
points and for different dur ations. The effects of specific 
strains and the timing of their administration on prior
ity effects and subsequent microbiota beneficial ser
vices should be examined  carefully before this  practice 
is widely endorsed.

Other opportunities to observe and investigate 
prior ity effects with limited additional risk to the 
infant include cases in which there is natural vari
ation in microbial colonization or in the species pools, 

such as during crosscultural comparisons of ICABs, 
although confounding variables make inference com
plicated. Moreover, stool provides only a limited view 
of the microbial interactions that occur throughout the 
lumen of the gut and poorly reflects interactions among 
mucosa associated microorganisms, especially those 
that take place in more proximal regions of the gastro
intestinal tract4,124. Endoscopic biopsies, mucosal brush
ings and other sampling approaches are likely neces sary 
to observe these finescale interactions. In addition, 
studying how communities assemble at other body sites 
that are more amenable to experimental intervention, 
such as transplant experiments among skin or oral 
communities125, might yield insight into the factors that 
shape community assembly in the gut. In concert with 
experi mental and clinical data collection, statistical tech
niques for analysing the data should be improved, and 
methods developed in the ecological literature126 should 
be helpful.

We have focused primarily on bacteria, but priority 
effects are also possible across domains of life (that is, 
between bacteria and archaea and/or eukaryotic micro
organisms)127–130. In particular, diverse fungal communi
ties are present in infants131. Fungi are transmitted from 
mother to infant in early life, their dispersal history 
can be highly variable among infants, and once immi
grated, they can interact strongly with bacteria87. Yet 
we have little understanding of how they affect micro
bial community assembly via priority effects. Studies 
on the infant gut should consider the broadly defined 
microbial community.

Conclusions

We have discussed the mechanisms, conditions and 
consequences of priority effects that might affect micro
organisms in the gastrointestinal tract. Ecological theory 
and circumstantial evidence strongly suggest that prior
ity effects are important to infant health, but definitive 
direct evidence is largely lacking. Given that we now 
have the foundational concepts from community eco
logy and many of the molecular and computational tools 
needed to study the microbiome, we believe the time 
is ripe for studying priority effects by use of clinically 
 relevant data to improve microbiome management.
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